metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[aquacopper(II)]- μ_2 -iminodiacetato- $\kappa^4 O, N, O': O'$]

Qin Zhong, Yu-Hong Wang* and Xue-Ting Zhang

School of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China Correspondence e-mail: wangyuhong@mail.usts.edu.cn

Received 29 September 2011; accepted 7 October 2011

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (C–C) = 0.004 Å; R factor = 0.034; wR factor = 0.082; data-to-parameter ratio = 14.3.

In the title compound, $[Cu(C_4H_5O_4)(H_2O)]_n$, the iminodiacetate (ida) ligands link the Cu^{II} atoms into polymeric zigzag chains running along [010]. Each Cu^{II} ion is fivecoordinated in a distorted square-pyramidal geometry by one N and two O atoms from an ida ligand, one O atom from the neighbouring ida ligand and one water O atom. In the crystal, the polymeric chains are held together *via* intermolecular O– $H \cdots O$ and N– $H \cdots O$ hydrogen bonds.

Related literature

For applications of coordination polymers containing bridging carboxylate groups, see: Dey *et al.* (2003); Wu *et al.* (2009); Zhang *et al.* (2008). For coordination polymers with iminodiacetic acid, see: Bresciani-Pahor *et al.* (1984); Ren *et al.* (2003); Song *et al.* (2011).

Experimental

Crystal data [Cu(C₄H₅O₄)(H₂O)] $M_r = 212.65$ Monoclinic, $P2_1/c$ a = 6.563 (3) Å

b = 9.870(4)
c = 10.876 (4)
$\beta = 99.802$ (8)
V = 694.2(5)

Å

Z = 4Mo $K\alpha$ radiation $\mu = 3.12 \text{ mm}^{-1}$

Data collection

Rigaku Saturn diffractometer
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
$T_{\rm min} = 0.369, T_{\rm max} = 0.652$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.034 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.082 & \text{independent and constrained} \\ S &= 1.02 & \text{refinement} \\ 1571 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.45 \text{ e } \text{ Å}^{-3} \\ 110 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.48 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$05 - H5A \cdots O1^{i}$ $05 - H5B \cdots O2^{ii}$ $N1 - H11A \cdots O2^{i}$	0.87 (1) 0.87 (1) 0.86 (1)	2.08 (1) 1.99 (1) 2.13 (1)	2.936 (4) 2.860 (4) 2.992 (3)	168 (4) 171 (4) 173 (3)
	. 1 . 1 .	м н 1	. 1	

T = 223 K

 $R_{\rm int} = 0.026$

 $0.40 \times 0.25 \times 0.15 \text{ mm}$

3854 measured reflections 1571 independent reflections

1358 reflections with $I > 2\sigma(I)$

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $x + 1, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *CrystalClear* (Rigaku, 2001); cell refinement: *CrystalClear*; data reduction: *CrystalStructure* (Rigaku, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank Suzhou University of Science and Technology for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5163).

References

- Bresciani-Pahor, N., Nardin, G., Bonomo, R. P. & Rizzarelli, E. (1984). J. Chem. Soc. Dalton Trans. pp. 2625–2630.
- Dey, S. K., Bag, B., Abdul Malik, K. M., El Fallah, M. S., Ribas, J. & Mitra, S. (2003). Inorg. Chem. 42, 4029–4035.
- Jacobson, R. (1998). *REQAB*. Private communication to the Rigaku Corporation, Tokyo, Japan.
- Ren, Y. P., Long, L. S., Mao, B. W., Yuan, Y. Z., Huang, R. B. & Zheng, L. S. (2003). Angew. Chem. Int. Ed. Engl. 42, 532–535.
- Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, R.-F., Yang, J., Zhong, Q. & Sun, M.-Y. (2011). Chin. J. Struct. Chem. 30, 1127–1131.
- Wu, J.-Y., Ding, M.-T., Wen, Y.-S., Liu, Y.-H. & Lu, K.-L. (2009). Chem. Eur. J. 15, 3604–3614.
- Zhang, L., Qin, Y.-Y., Li, Z.-J., Lin, Q.-P., Cheng, J.-K., Zhang, J. & Yao, Y.-G. (2008). *Inorg. Chem.* 47, 8286–8293.

supplementary materials

Acta Cryst. (2011). E67, m1528 [doi:10.1107/S1600536811041286]

catena-Poly[[aquacopper(II)]-µ2-iminodiacetato-K40,N,O':O']

Q. Zhong, Y.-H. Wang and X.-T. Zhang

Comment

The syntheses of coordination polymers containing bridging carboxylate groups are of current interest due to potential applications in the areas of magnetism, ion exchange and photochemistry (Dey *et al.*, 2003; Wu *et al.*, 2009; Zhang *et al.*, 2008). The iminodiacetic acid has been found to be useful ligand, and a lot of transition metal polymers of iminodiacetic acid have been reported (Bresciani-Pahor *et al.*, 1984; Ren *et al.*, 2003; Song *et al.*, 2011). Here, we report the crystal structure of the title compound, (I), a one-dimensional Cu(II) coordination polymer obtained by the hydrothermal synthesis reaction of iminodiacetic acid and copper(II) chlorine.

The title complex (I) is a one-dimensional zigzag chain coordination polymer, which results from the fact that the copper(II) ions are bridged sequentially by *syn-anti* carboxylate groups. A perspective view of the mononuclear fragment of (I) is given in Fig. 1. Each copper(II) ion is in a distorted square pyramidal geometry with three donor atoms (O1, N1, O3) of the ida ligand, one oxygen atoms O4A (A -x + 2, y - 1/2, -z + 3/2) belonging to the carboxylate group of one adjacent ida ligand and one terminal O (O5) atom of H₂O molecule. Two five-membered chelate rings [-Cu1—O3—C4—C3—N1- and -Cu1—O1—C2—C1—N1-] are formed with the metal atoms, and the two fused ring systems are folded along the common Cu1—N1 axis by 101.5 (1)°. In (I), each ida ligand is tetradentate when the bridge involving atom O4A is considered. One of carboxylate groups of each ida ligand is in an *syn-anti* conformation with respect to the two copper centres. Thus, the carboxylate groups act as bridges and connect the copper(II) centers to form a 1-D zigzag chain coordination polymer.

The one-dimensional polymeric chains are packed through intermolecular O—H…O and N—H…O hydrogen bonds (Table 1) to form three-dimensional structure (Fig. 2).

Experimental

CuCl₂·2H₂O (0.0171 g, 0.1 mmol), iminodiacetic acid (0.0133 g, 0.1 mmol), NaOH (0.0084 g, 0.2 mmol), H₂O (0.5 mL) and ethanol (3 mL) were placed in a thick Pyrex tube and heated at 120°C for 3 days. After cooling at a rate of 5°C/h to the ambient temperature, blue block crystals were collected, washed with anhydrous ethanol, and then dried at room temperature. The yield is 76% based on iminodiacetic acid. Analysis found: C, 22.98; H, 3.36; N, 6.56%. Calculated for C₄H₇CuNO₅: C, 22.59; H, 3.32; N, 6.59%.

Refinement

C-bound H atoms were geometrically positioned and refinded using a riding model, with $U_{iso}(H) = 1.2 U_{eq}(C) [d(C-H) = 0.98\text{ Å} (for CH_2)]$. H atoms attached to N and O were located on difference maps and refined with N-H distances restrained to 0.87 (1)Å ($U_{iso}(H) = 1.2 U_{eq}(N)$), and with O-H distances retsrained to 0.86 (1) Å ($U_{iso}(H) = 1.2 U_{eq}(O)$).

Figures

Fig. 1. A portion of the crystal structure of (I), showing the atomic numbering and 30% probabilty displacement ellipsoids [symmetry codes: (A) -x + 2, y - 1/2, -z + 3/2; (B) -x + 2, y + 1/2, -z + 3/2]

Fig. 2. A portion of the crystal packing viewed approximately down the *a* axis. Dashed lines denote hydrogen bonds. H atoms with no hydrogen bond interactions have been omitted for clarity.

catena-Poly[[aquacopper(II)]- μ -iminodiacetato- $\kappa^4 O, N, O': O'$]

Crystal data	
$[Cu(C_4H_5O_4)(H_2O)]$	F(000) = 428
$M_r = 212.65$	$D_{\rm x} = 2.035 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71075$ Å
Hall symbol: -P 2ybc	Cell parameters from 3372 reflections
a = 6.563 (3) Å	$\theta = 3.1 - 27.5^{\circ}$
b = 9.870 (4) Å	$\mu = 3.12 \text{ mm}^{-1}$
c = 10.876 (4) Å	T = 223 K
$\beta = 99.802 \ (8)^{\circ}$	Block, blue
$V = 694.2 (5) \text{ Å}^3$	$0.40\times0.25\times0.15~mm$
Z = 4	

Data collection

Rigaku Saturn diffractometer	1571 independent reflections
Radiation source: fine-focus sealed tube	1358 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.026$
Detector resolution: 14.63 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
ω scans	$h = -8 \rightarrow 8$
Absorption correction: multi-scan (<i>REQAB</i> ; Jacobson, 1998)	$k = -12 \rightarrow 12$
$T_{\min} = 0.369, \ T_{\max} = 0.652$	$l = -9 \rightarrow 14$
3854 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.082$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.02	$w = 1/[\sigma^2(F_0^2) + (0.046P)^2 + 0.157P]$ where $P = (F_0^2 + 2F_c^2)/3$
1571 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
110 parameters	$\Delta \rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$
3 restraints	$\Delta \rho_{\rm min} = -0.48 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
Cu1	0.85030 (5)	0.23532 (3)	0.75251 (3)	0.02015 (14)
01	0.6802 (4)	0.2321 (2)	0.5873 (2)	0.0312 (5)
O2	0.4101 (3)	0.3228 (3)	0.4674 (2)	0.0378 (6)
O3	0.9803 (3)	0.4446 (2)	0.7449 (2)	0.0312 (5)
O4	0.9274 (3)	0.64968 (19)	0.8186 (2)	0.0265 (5)
O5	0.9679 (4)	0.1781 (3)	0.9246 (2)	0.0454 (6)
H5A	0.897 (6)	0.212 (4)	0.978 (3)	0.054*
H5B	1.1022 (18)	0.184 (5)	0.945 (4)	0.054*
N1	0.6164 (4)	0.3497 (2)	0.7986 (2)	0.0200 (5)
H11A	0.546 (4)	0.303 (3)	0.844 (3)	0.024*
C1	0.4669 (4)	0.3788 (3)	0.6828 (3)	0.0263 (6)
H1A	0.4639	0.4767	0.6674	0.032*
H1B	0.3282	0.3511	0.6949	0.032*
C2	0.5202 (5)	0.3069 (3)	0.5707 (3)	0.0256 (6)
C3	0.7073 (4)	0.4735 (3)	0.8622 (3)	0.0226 (6)
H3A	0.7568	0.4537	0.9505	0.027*
H3B	0.6011	0.5440	0.8571	0.027*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C4	0.8864 (4)	0.5246 (3)	0.80	023 (3) 0.0	0208 (6)		
Atomic displace	ement parameter.	s (Å ²)					
	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}	
Cu1	0 0235 (2)	0.0177 (2)	0.0204(2)	0.00209(13)	0.00672 (14)	0 00000 (13)	
01	0.0320 (12)	0.0387(12)	0.0226(12)	0.00200(10)	0.0042(9)	-0.0061(9)	
02	0.0342 (12)	0.0540 (14)	0.0233 (13)	0.0085 (11)	-0.0003 (10)	-0.0008 (11)	
03	0.0306 (12)	0.0195 (10)	0.0491 (15)	-0.0004 (9)	0.0229 (10)	-0.0010 (9)	
04	0.0341 (11)	0.0187 (9)	0.0297 (12)	-0.0081 (9)	0.0138 (9)	-0.0055 (8)	
05	0.0394 (14)	0.0669 (18)	0.0307 (15)	0.0129 (14)	0.0085 (11)	0.0028 (12)	
N1	0.0231 (12)	0.0185 (11)	0.0202 (13)	-0.0033 (10)	0.0085 (9)	-0.0004 (9)	
C1	0.0233 (14)	0.0289 (15)	0.0263 (17)	0.0006 (13)	0.0030 (12)	-0.0012 (12)	
C2	0.0284 (16)	0.0253 (14)	0.0235 (16)	-0.0030 (13)	0.0055 (12)	0.0000 (12)	
C3	0.0265 (15)	0.0171 (12)	0.0263 (16)	-0.0019 (11)	0.0101 (12)	-0.0053 (11)	
C4	0.0203 (14)	0.0199 (13)	0.0215 (15)	-0.0032 (11)	0.0016 (11)	0.0019 (11)	
Geometric para	meters (Å, °)						
Cu1—01		1 948 (2)	05-	_H5B	0.87	73 (10)	
Cu1 O1		1.955 (2)	N1_	-C3	1.4	1 478 (3)	
Cu1 = 04		1.935(2)	NI	C1	1.496 (4)		
Cu1—05		2.036(2)	N1-	—С1 Н11 А	0.863(10)		
Cu1 - 03		2.030(2)			1.503(10)		
01-03		2.241(2) 1 271(4)	C1-		0.99	200	
01 - 02		1.271(4) 1 238(4)	C1-		0.98	300	
$02 \ 02$		1 234 (3)	C1 C3-		1.50	23 (4)	
04 - C4		1.231(3) 1.270(3)	C3-	_H3A	0.98	300	
$O_{1} = C_{11}^{11}$		1.955 (2)	C3-	_H3B	0.90	200	
04—Cui		1.933(2)	05-	-115D	0.90	500	
O_{3} O_{1} C_{1} O_{4}^{i}		0.873 (10) 88 70 (10)	C1-	-N1-H11A	104	(2)	
01 - Cu1 - 04		159 50 (11)	Cu1	N1H11A	110	(2)	
		03.05 (10)	N1	C1 $C2$	110	(2)	
$04^{}Cu1 = 05$		93.03 (10)	IN I-	-C1 - C2	112	.0 (2)	
OI—CuI—NI		84.15 (10)	NI-	-CI-HIA	109	.1	
O4 ⁻ —Cul—N1		168.97 (9)	C2-	-CI-HIA	109	.1	
O5—Cul—NI		96.58 (10)	NI-	-CI-HIB	109	.1	
01—Cu1—03		98.23 (9)	C2-	-CI-HIB	109	.1	
O4 ¹ —Cu1—O3		93.97 (8)	H1A	А—С1—Н1В	107	.8	
O5—Cu1—O3		102.01 (11)	O2-	C2O1	122	.9 (3)	
N1—Cu1—O3		78.80 (8)	02-	C2C1	119	.7 (3)	
C2—O1—Cu1		116.8 (2)	01-		117	.4 (3)	
C4—O3—Cu1		110.15 (17)	N1-	C3C4	110	.7 (2)	
C4—O4—Cu1 ⁱⁱ		121.34 (19)	N1-	—С3—НЗА	109	.5	
Cu1—O5—H5A		111 (3)	C4-	—С3—НЗА	109	.5	
Cu1—O5—H5B		116 (3)	N1-	—С3—Н3В	109	.5	
H5A—O5—H5E	3	116 (4)	C4-	—С3—Н3В	109	.5	
C3—N1—C1		113.1 (2)	H3A	А—СЗ—НЗВ	108	.1	

C3—N1—Cu1	108.17 (17)	O3—C4—O4	125.4 (3)		
C1—N1—Cu1	108.40 (17)	O3—C4—C3	119.5 (2)		
C3—N1—H11A	113 (2)	O4—C4—C3	115.0 (2)		
O4 ⁱ —Cu1—O1—C2	-164.3 (2)	O3—Cu1—N1—C1	93.24 (18)		
O5—Cu1—O1—C2	100.5 (3)	C3—N1—C1—C2	125.0 (3)		
N1—Cu1—O1—C2	7.3 (2)	Cu1—N1—C1—C2	5.1 (3)		
O3—Cu1—O1—C2	-70.5 (2)	Cu1—O1—C2—O2	173.5 (2)		
O1—Cu1—O3—C4	100.6 (2)	Cu1—O1—C2—C1	-6.1 (3)		
O4 ⁱ —Cu1—O3—C4	-170.2 (2)	N1—C1—C2—O2	-179.3 (3)		
O5—Cu1—O3—C4	-76.2 (2)	N1-C1-C2-O1	0.3 (4)		
N1—Cu1—O3—C4	18.2 (2)	C1—N1—C3—C4	-82.1 (3)		
O1—Cu1—N1—C3	-129.37 (18)	Cu1—N1—C3—C4	38.0 (3)		
O4 ⁱ —Cu1—N1—C3	-79.5 (5)	Cu1—O3—C4—O4	177.6 (2)		
O5—Cu1—N1—C3	71.24 (19)	Cu1—O3—C4—C3	-1.3 (3)		
O3—Cu1—N1—C3	-29.75 (17)	Cu1 ⁱⁱ —O4—C4—O3	1.8 (4)		
O1—Cu1—N1—C1	-6.38 (17)	Cu1 ⁱⁱ —O4—C4—C3	-179.27 (19)		
O4 ⁱ —Cu1—N1—C1	43.5 (5)	N1—C3—C4—O3	-24.3 (4)		
O5—Cu1—N1—C1	-165.77 (18)	N1—C3—C4—O4	156.6 (2)		
Symmetry codes: (i) $-x+2$, $y-1/2$, $-z+3/2$; (ii) $-x+2$, $y+1/2$, $-z+3/2$.					

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A	
O5—H5A…O1 ⁱⁱⁱ	0.87 (1)	2.08 (1)	2.936 (4)	168 (4)	
O5—H5B···O2 ^{iv}	0.87 (1)	1.99 (1)	2.860 (4)	171 (4)	
N1—H11A····O2 ⁱⁱⁱ	0.86 (1)	2.13 (1)	2.992 (3)	173 (3)	
Symmetry codes: (iii) $x, -y+1/2, z+1/2$; (iv) $x+1, -y+1/2, z+1/2$.					

